

Coagulopathy of Liver Disease assessed by ROTEM and CAT

Sara Ng

"Re-balanced" haemostasis

	Antihemostatic	Prohemostatic
Primary		
Hemostasis	Thrombocytopenia	High VWF
	Platelet dysfunction*	Low ADAMTS 13
	Low procoagulant factors (II, V, VII, IX, XI)	High FVIII
Coagulation	Low fibrinogen**	Low anticoagulant proteins (PC, PS, AT)
Coagulation	Dysfibrinogenemia	Impaired TFPI pathway
Fibrinolysis	Low antiplasmin	
	Low TAFI	Low plasminogen
	High tPA	High PAI-1

Why does it matter?

Conventional coagulation assays

(PT, APTT, Platelet count*)

Viscoelastic Coagulation Assays

Calibrated Automated Thrombogram

Rotational Thromboelastometry

(ROTEM)

- A POCT measuring the viscoelastic properties of whole blood.
- Each test is initiated by recalcification of a citrated blood sample and by adding activators of the extrinsic and intrinsic pathways
 - **EXTEM** Tissue factor
 - **FIBTEM** Tissue factor + Cytochalasin D
 - APTEM Tissue factor + Tranexamic acid
 - INTEM Ellagic acid
 - HEPTEM Ellagic acid + Heparinase

Calibrated Automated Thrombogram

Lag time
Time to peak
Peak height

Area under the curve (ETP)

10 20 30 40 50

Time (min)

- Thrombin generation was measuring using the method described by Hemker et al.
 - PPP + Trigger solution (TF, phospholipids, PPP reagent) + Fluka solution (CaCl₂, fluorogenic thrombin substrate)
 - Fluorescence is then measured by an automated microtiter plate fluorometer at 37°C
 - The Thrombinoscope software program is used to calculate thrombin activity using a calibrator to display thrombin activity against time in a thrombogram – lag time, thrombin generation velocity, peak thrombin concentration, ttPeak and ETP.

Objective

Primary objectives

To study the relationship between conventional coagulation assays, ROTEM and CAT in patients with coagulopathic liver disease.

To identify which (ROTEM) parameters may be predictive of bleeding in this patient cohort.

Methods

Insert the title of your subtitle Here

Twenty adult patients with cirrhotic liver disease admitted consecutively to Liverpool Hospital over a 6-months period (Nov 17 – Apr 18).

Eligible if INR ≥ 1.8 and/or platelets ≤ 50x10⁹/L. Exclusion criteria were haemostatic disorders other than liver disease and the use of medications known to affect blood coagulation (antiplatelets and/or anticoagulant therapy).

Two sodium citrate tubes collected after informed consent.

Tube #1: ROTEM

Tube #2: PT/APTT/Fibrinogen & CAT

Table	1	Patient d	lemograp	hics
TUNIT	-	I amount	TOTTION STREET	$LLL \cup O$

	All	Child-Pugh A	Child-Pugh B	Child-Pugh C
A ()	(n=20)	(n=2)	(n=4)	(n=14)
Age (years)	58 (53-69)	73 (69-76)	70 (63-86)	56 (49-60)
Male sex (n)	13 (65%)	1 (50%)	2 (50%)	10 (71%)
Actiology of liver disease* (n)				
HCV	4	1	1	4
HBV	2	0	0	2
Alcohol	11	0	1	10
NASH	4	0	2	2
Other^	4	2	1	1
Haemoglobin (120-170g/L)	98 (81-124)	99 (96-102)	112 (99-139)	93 (80-125)
Haematocrit (0.36-0.50L/L)	0.29 (0.24-0.36)	0.30 (0.28-0.31)	0.33 (0.30-0.41)	0.28 (0.24-0.36)
Platelets (150-400x109/L)	47 (41-69)	47 (46-48)	53 (43-111)	47 (37-72)
PT (12-15s)	24 (20-26)	18 (16-19)	16 (16-26)	24 (21-27)
INR (0.9-1.2)	2.1 (1.7-2.4)	1.5 (1.3-1.6)	1.7 (1.3-2.3)	2.2 (1.9-2.6)
APTT (25-37s)	44 (38-51)	36 (28-44)	40 (32-44)	47 (42-60)
Fibrinogen (2.0-4.3g/L)	1.8 (1.2-2.3)	2.0 (1.7-2.2)	2.6 (2.2-4.1)	1.3 (1.0-2.0)
D-dimer (<0.25mg/L)	1.80 (1.37-2.80)	0.95 (0.38-1.51)	1.77 (1.50-3.73)	1.93 (1.33-3.32)
Bilirubin (<21umol/L)	80 (31-131)	15 (13-17)	36 (18-102)	95 (24-199)
Albumin (33-48g/L)	37 (31-41)	37 (33-40)	43 (33-48)	35 (25-47)
MELD Score	23 (17-27)	16 (14-18)	20 (16-24)	25 (18-32)
Portal Hypertension (n)	19	2	3	14
Urea (3.0-8.0mmol/L)	7.7 (4.4-12)	13.7 (9.3-18.1)	9.3 (5.0-11.9)	6.6 (4.2-12.2)
Creatinine (45-110umol/L)	87 (66-136)	161 (116-206)	100 (62-88)	83 (67-132)
History of bleeding (n)	12	1	1	10
History of thrombosis (n)	8	1	4	3

Table 2 Correlation between conventional coagulation and ROTEM parameters

Conventional coagulation parameters	ROTEM parameters	Correlation coefficient	<i>p</i> -value
DT (a)	CT _{EXTEM} (s)	0.71	0.0004
PT (s)	CFT _{EXTEM} (s)	0.58	0.0104
ADTT (a)	CT _{INTEM} (mm)	0.79	< 0.0001
APTT (s)	CFT _{INTEM} (mm)	0.46	0.0392
Fibrinogen (g/L)	MCF _{FIBTEM} (mm)	0.90	< 0.0001

Abbreviations: PT, Prothrombin time; INR, International Normalised Ratio, APTT, Activated partial thromboplastin time; CT, Clotting time; MCF, Maximum clot firmness

Table 4 Correlation between conventional coagulation and CAT parameters

Conventional coagulation parameters	CAT parameters	Correlation coefficient	<i>p</i> -value
PΤ (s)	Dools throughin (nM)	-0.79	0.0007
APTT (s)	Peak thrombin (nM)	-0.79	0.0007
PΤ (s)	ETP (nM/min)	-0.59	0.0270
Fibrinogen (g/L)	Lag time (min)	0.54	0.0471

Abbreviations: PT, Prothrombin time; APTT, Activated partial thromboplastin time; CAT, Calibrated automated

thrombogram; ETP, Endogenous thrombin potential

Table 5 Correlation between ROTEM and CAT parameters

ROTEM parameters	CAT parameters	Correlation coefficient	<i>p</i> -value
α angle _{EXTEM}		0.70	0.0056
MCF _{EXTEM} (mm)	Peak thrombin (nM)	0.66	0.0110
MCF _{INTEM} (mm)	Feak thrombin (mvi)	0.66	0.0096
MCF _{FIBTEM} (mm)		0.52	0.0556
α angle _{EXTEM}		0.61	0.0214
MCF _{EXTEM} (mm)	ETD (aM /min)	0.59	0.0279
MCF _{INTEM} (mm)	ETP (nM/min)	0.58	0.0286
MCF _{FIBTEM} (mm)		0.57	0.0337

Abbreviations: CAT, Calibrated automated thrombogram; ETP, Endogenous thrombin potential; MCF, Maximum clot firmness

- Platelet count showed poor correlation with measured ROTEM values.
- The calculated MCE (maximum clot elasticity, measured by MCF_{EXTEM}-MCF_{FIBTEM}), thought to be a more accurate estimate of the platelet contribution to overall clot firmness, did not correlate with platelet count.
- The contributory role of platelets was not measured in our CAT assays as PPP was used.

Table 6 Laboratory values in patients with a bleeding history versus thrombotic history and in periprocedural settings

	Bleeding	Thrombosis	Peri-procedure
	(n=8)	(n=4)	(n=9)
Age	54 (43-58)	70 (59-86)	57 (56-67)
MELD Score	24 (17-33)	20 (16-32)	24 (17-32)
Haemoglobin (120-170g/L)	87 (76-99)	99 (86-118)	93 (78-124)
Haematocrit (0.36-0.50L/L)	0.26 (0.23-0.29)	0.30 (0.26-0.35)	0.28 (0.23-0.36)
Platelets (150-400x109/L)	43 (38-63)	43 (38-57)	44 (39-65)
PT (12-15s)	24 (22-34)	22 (16-27)	24 (19-29)
INR (0.9-1.2)	2.2 (1.8-3.3)	1.9 (1.3-2.4)	2.1 (1.7-2.8)
APTT (25-37s)	45 (42-57)	40 (32-59)	48 (39-66)
Fibrinogen (2.0-4.3g/L)	1.1 (0.9-2.0)	2.3 (1.5-2.8)	1.4 (1.1-2.3)
MCF _{EXTEM} (56-72mm)	36 (28-40)	38 (33-45)	38 (33-38)
MCF _{INTEM} (51-69mm)	37 (31-41)	39 (33-47)	37 (33-39)
MCF _{FIBTEM} (6-21mm)	9 (5-12)	13 (8-14)	8 (7-12)
MCF _{APTEM} (52-77mm)	35 (28-41)	38 (32-47)	37 (20-40)
MCE _{EXTEM-FIBTEM}	45 (33-54)	46 (40-67)	46 (42-51)
CT _{EXTEM} (50-80s)	97 (74-145)	90 (70-124)	94 (82-143)
CT _{INTEM} (161-204s)	204 (193-239)	188 (158-277)	207 (178-264)
CFT _{EXTEM} (46-149s)	301 (177-376)	278 (191-345)	269 (228-345)
CFT _{INTEM} (62-130s)	282 (183-444)	245 (179-318)	233 (216-363)
Lag time (3.0-3.3min)	2.3 (2.0-3.0)	3.2 (2.67-3.78)	2.4 (2.2-2.6)*
Time to peak thrombin (6.2-7.3min)	4.6 (4.0-5.3)	5.4 (5.1-5.7)	4.7 (4.5-5.1)*
Peak thrombin (245-355nM)	199 (89-263)	170 (134-206)	164 (107-245)*
ETP (1728-2327nM/min)	1524 (1014-2201)	1536 (1477-1595)	1624 (1159-2064)*

Values expressed as median with interquartile ranges

^{*}Only 4 of the 9 patients who underwent invasive procedures had samples for measuring thrombin generation

Discussion

• Poor correlation between PT and APTT with ROTEM-CT values have been previously quoted in the literature (r=0.24-0.37). However these studies were performed in patients undergoing liver transplantation (liver donors and recipients).

Discussion

- For the 9 patients who underwent invasive procedures, their ROTEM values satisfied the ROTEM-guided transfusion thresholds as suggested by Goerlinger's algorithm for coagulation management during liver transplantation.
 - 3 patients had prophylactic blood product transfusions
- There were no post-procedural bleeds with these targets, and whilst larger numbers are required to confirm this, it is possible that these ROTEM thresholds could be lowered and re-evaluated.

Limitations

- Small number of patients
- PRP would be a more physiological medium to measure thrombin generation.
- None of these assays take into account the role of the endothelium in haemostasis
- None these assays detect the activity of anticoagulants.

Acknowledgements

- Dr Penelope Motum
- Dr Minh Hua
- Sarah Just
- Diane Zebeljan
- Gastroenterology Department, Liverpool Hospital
- Laboratory staff at SWAPS Pathology, Liverpool Hospital