The influence of travel, marathon running and compression socks on blood clot risk

Emma K. Zadow¹, Murray J. Adams^{1,2}, Sam S.X. Wu^{1,3}, Cecilia M. Kitic¹, Indu Singh⁴, Avinash Kundur⁴, Nerolie Bost^{5,6}, Amy N.B. Johnston^{5,6}, Julia Crilly^{5,6}, Andrew C. Bulmer⁴, Shona L. Halson⁷ and James W. Fell¹

¹-Sport Performance Optimisation Research Team, School of Health Sciences, University of Tasmania, ²-School of Veterinary and Life Sciences, Murdoch University, ³-Faculty of Health, Arts and Design, Swinburne University of Technology, ⁴-Menzies Health Institute, Griffith University, ⁵-School of Nursing and Midwifery, Griffith University, ⁶-Department of Emergency Medicine, Gold Coast Health, ⁷-Department of Physiology, Australian Institute of Sport

INTRODUCTION

- Venous thromboembolisms (VTE) in athletes is a serious condition
 - Career or life-threatening ramifications (i.e. death)

Serena Williams
Pulmonary Embolism
Missed 12 months of Tennis

Kamila Skolimowska (26)
Olympic Gold Medal (Sydney)
Pulmonary Embolism

 Several cases of travel & exercise-related VTE in athletes have been reported (Eichner, 2009, Tao, 2010 & Reynolds, 2013)

INTRODUCTION

 Haemostasis is the physiological response in the prevention of excessive bleeding and clotting

- Constantly active at low levels
- Individually, & may increase the risk of thrombosis (Schreijer, 2006, Prisco, 1998)
 - Transient ↑ in coagulation activation
- travel: hypoxia, prolonged sitting & dehydration (Kupchak, 2018)
- Endurance : microtrauma to vessel wall, dehydration, injury & inflammation (Hull & Harris, 2013, Anderson, 2003)

TRAVEL, EXERCISE AND VTE

- Combining air travel & exercise may cause a coagulation-fibrinolytic imbalance,
 † thrombotic risk (Kupchak, 2018)
- ~85% of air-travel thrombosis victims are endurance athletes
 - ↓ resting blood flow rate (low HR and BP), atrial fibrillation
- Parker 2011
 - Coagulation was ↑ <u>after</u>

 a marathon in runners who
 flew > 4 h <u>prior</u> to the race

p<0.05

Can VTE potential be reduced when travelling & exercising?

COMPRESSION SOCKS

- Compression socks are widely used within clinical settings
- Demonstrated to maintain coagulation & fibrinolytic balance
 - ↓ DVT
- Zaleski et al. (2015)
 - ↓ TAT in the SOCK group vs. CONTROL group following a marathon
 - D-dimer= no difference
- Similar findings by Taylor et al. (2017) in female marathon runners

Will a combination of travel, marathon running and compression socks \downarrow VTE risk?

STUDY AIMS

- 1. Examine the effect of pre-marathon travel (domestic versus international) on haemostatic markers (Tissue Factor (TF), Tissue Factor Pathway Inhibitor (TFPI), Thrombin Anti-thrombin Complex (TAT) and D-Dimer)
- 2. Examine the influence of compression socks on coagulation activation following a marathon

INT: n=25

METHODS

Pre- and Post-marathon blood samples were collected and analysed for TF, TFPI, TAT and D-Dimer via ELISA

RESULTS

Table 1. Mean (± SD) participant demographics and overall marathon finish time

Variable	DOMESTIC	INTERNATIONAL	P value
Age (years)	43.6 ± 11.5	46.4 ± 9.7	0.319
Body mass (kg)	70.0 ± 17.2	71.9 ± 10.6	0.335
Height (cm)	171.9 ± 10.0	173.2 ± 6.5	0.445
Marathon Finish Time (h:min)	4:29 ± 1:17	4:27 ± 1:16	0.106

RESULTS

Pre-exercise D-Dimer was
 in INT vs DOM
 travellers

Figure 1. Median (± range) for TF, TFPI, TAT and D-Dimer collected pre-marathon and compared between Domestic and International marathon runners

RESULTS

- Main effect for Δ for TF & D-Dimer
- Δ D-Dimer > in CONT:DOM group when compared to SOCK:DOM & SOCK:INT

Figure 2. Median (\pm range) for Δ of change (PRE-POST) A) TF and B) D-Dimer between CONT:DOM, CONT:INT, SOCK:DOM and SOCK:INT groups

TASMANIA DISCUSSION & CONCLUSION

- Greater pre-exercise coagulation activation was observed in runners travelling internationally versus domestically (Figure 1)
 - Transient 个 in coagulation activation
 - Travel >4 h
- When worn during a marathon run, compression socks were shown to \downarrow the magnitude of change in D-Dimer (Figure 2)
 - Zaleski (2015) & Taylor (2017): ↓ TAT
 - 1st time observed
- Compression socks have the potential to reduce overall haemostatic activation and blood clot risk when worn during a marathon, regardless of prior travel undertaken

REFERENCES

- 1. Eichner, E.R., Blood clots and plane flights. Current Sports Medicine Reports, 2009. 8(3): p.106-107
- 2. Tao, K. and Davenport, M., Deep venous thromboembolism in a triathlete. J Emerg Med, 2010. 38(3): p.35-37
- 3. Kupchak, B.R., Exercise and air-travel-induced alterations in blood haemostasis, Semin Thromb Hemost, DOI: 10.1055/S-0038-1670640
- **4.** Hull, C and Harris, J.A., Venous thromboembolism and marathon athletes. Circulation, 2013, 128(5): p469-71
- 5. Anderson, F.A., Risk factors for venous thromboembolism. Circulation. 2003. 107: p.9-16
- **6. Reynolds, T.C.** et al., Deep Vein Thrombosis in a Collegiate Female Soccer Player: A Case & Evidence-Supported Review. J Athl Enhancement, 2013. 4: p.2
- 7. Parker, B. et al., Effect of air travel on exercise-induced coagulatory and fibrinolytic activation in marathon runners. Clin J Sport Med, 2011. 21(2): o.126-30
- **8. Zaleski, A.L.** et al., The effect of compression socks worn during a marathon on hemostatic balance. Phys Sportsmed, 2015: p.1-6
- **9. Taylor, B.A.** et al., Compression socks worn during flight and haemostatic balance in Boston marathon runners on oral contraceptives. Clin J Sport Med. 2017. p.1-6

THANK YOU

PARTICIPANTS!!

